IPN Progress Report 42-176 e February 15, 2009

Finding Every Root of a Broad Class of Real
Continuous Functions in a Given Interval

Robert C. Tausworthe*

This article presents a mathematical root finder capable of finding all roots of an arbitrary
continuous function within a given interval subject to very lenient parameterized assump-
tions, which are (1) that adjacent roots are separated at least by a given amount, xGuard;
(2) any point whose function value is less than e¢f in magnitude is considered to be a root;
(3) function values at distances xGuard away from a root are larger than ef, unless there

is another root located in this vicinity; (4) a root is considered found if, during iteration,
two root candidates differ by less than a prespecified ex; and (5) that the optimum cubic
polynomial matching the function at the end and two internal points, and that is within a
relative error fraction eL at its midpoint, is reliable in indicating whether the function has
extrema within the interval. The robustness of this method depends solely on choosing
these four parameters that control the search. The roots of discontinuous functions were
also found, but at degraded performance.

I. Introduction

One of the most pervasive needs within Deep Space Network (DSN) Metric Prediction Gen-
erator (MPG) view period event generation is that of finding solutions to given occurrence
conditions. While the general form of an equation expresses equivalence between its left-
hand and right-hand expressions, the traditional treatment of the subject subtracts the two
sides, leaving an expression of the form f(x) = 0. Values of the independent variable x sat-
isfying this condition are roots, or solutions. Generally speaking, there may be no solutions,
a unique solution, multiple solutions, or a continuum of solutions to any given equation.

In particular, all view period events are modeled as zero crossings of various metrics. For
example, the time at which the elevation of a spacecraft reaches its maximum value, as
viewed from a Deep Space Station (DSS), is found by locating that point at which the
derivative of the elevation function becomes zero. Moreover, each event type may have
several occurrences within a given time interval of interest. For example, a spacecraft in a
low Moon orbit will experience several possible occultations per day, each of which must be
located in time.

* SGT, Inc.; consultant, DSN Planning and Execution Software Systems Section, under a contract to Raytheon, Inc.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration. © 2009 California Institute
of Technology. Government sponsorship acknowledged.

The MPG is charged with finding all specified event occurrences that take place within a
given time interval (e.g., a “pass”), without any special clues from operators as to when
they may occur, for the entire spectrum of missions undertaken by the DSN. For each event
type, the event metric function is a known form that can be computed for any instant
within the interval.

The MPG is required to operate in unattended, noninteractive mode for each of its many
applications; it is required to work for all targets submitted to it; it is required to produce
all predictions requested of it; it is required to predict an event when there will be one, and
not to report one when none will occur; and it is required to produce predictions within
specified accuracy.

Computational resource requirements in these applications are usually proportional to

the number of times a given function is evaluated, so the number of samples required to
predict an event is an important design consideration. Efficiency, together with robustness
and accuracy requirements that are placed on the MPG, make stringent demands on the
methods that may be used. However, as competing design considerations, robustness is
considered more important than an algorithm’s complexity and time consumption. Con-
sequently, brute force methods are acceptable when more sophisticated methods are absent
and when their use is necessary to meet schedules, provided there is enough computational
power available to meet efficiency requirements.

The MPG has developed sophisticated and robust polynomial curve-fitting algorithms to
extract and reproduce the dynamic characteristics of many prediction data types, such as
uplink and downlink frequencies and antenna pointing angles. Because this capability
was available, and because implementation resources were scarce, the curve-fitting object
was adapted, when needed, to serve view period event detection as well. This approach
provided the needed robustness, but resulted in somewhat unnatural and awkward event-
detection designs that have since proved noticeably time-consuming in DSN operations.

In order to determine the feasibility of developing a more natural method of event detec-
tion and to quantify its robustness and efficiency, the author subsequently has investigated
methods that apply single-root-finder techniques to the search for multiple roots over the
time intervals of interest. As many textbooks in numerical analysis warn the reader, as
experience bears out, and as literature searches verify, currently (1) there are no foolproof
methods for finding single roots of any multiplicity; and (2) there are no rigorous methods
to conduct multiple! root searches.

The usual advice in textbooks that is given to one seeking to solve an equation is to analyze
the object function carefully to gain insight, and then to use this insight in choosing the
right methods to apply. Unfortunately, this advice is not practical in MPG applications; but
it can be useful, to a limited extent, in algorithm design. The general character of a metric
function in an application may be known, but the particulars may vary widely over a con-
siderable dynamic range.

! Multiple roots in the MPG context means the occurrence of events at different instants in time. The multiplicity of
roots is not deemed significant.

The goal of the study was thus to develop an algorithm that, while not being completely
foolproof, is nevertheless efficient and robust over a class of functions wide enough to
encompass those found in view period event detection, that adapts its operation to the
dynamical character of each function subjected to it, and that is still more efficient than at-
tained using the MPG curve-fitting object.

The methods (there are two) developed in the study (one of which is reported here) seem to
provide efficient and robust operations, as judged by simulated MPG applications. By design,
they work best on functions that are continuous. They both appear to perform reliably, but
at somewhat degraded efficiency, when applied to discontinuous functions.

In keeping with the goal of the study, the algorithm that is reported on in this article

is named? EveryRoot. This method iteratively samples the given object function at
various locations across the interval. The other method developed, bearing the name
EveryDvRoot, operates in a similar fashion on samples of the function and its first deriva-
tive. Although it is not further described here, its implementation in Mathematica form
may be found among the MPG Mathematica Archives, available via the Service Preparation
Subsystem (SPS) portal.?

Il. Accuracy and Object Function Criteria

Because the MPG is required to find roots of so many differently varying functions, it
appears that not any of the now-known root finding methods can be trusted to work
unattended for all applications. Even for one given event type, such as finding the time of
maximum elevation as described above, the widely varying characteristics of targets over the
entire set of DSN missions make the robustness of using any one method problematic. In
order to make root finding a more robust, reliable, and accurate process, it is necessary to set
forth practical parameterized criteria for the kinds of functions that are found in MPG event
metrics and for processing techniques that can yield required event detection accuracies.
The following hypotheses were thus set forth.

(1) Functions of interest are presumed to be real-valued and continuous over the given
search interval. If an actual object function is piecewise continuous, then the root
finder will presumably be applied separately to each continuous segment. Points at
which discontinuities occur are presumed known.*

(2) These functions may not have distinct roots spaced more closely than some
specified tolerance. In particular, if a root is found to exist at x = r, then no other
distinct root is presumed to lie within the interval [» — xGuard, » + xGuard] for a
prespecified xGuard value. This guard is meant to ensure (see criterion 4, below)
that a just-found root can be isolated so as not to be found again in later actions.

(3) Aroot is deemed to exist at a value x = r if the function magnitude at this point is
less than some small number, i.e., | f(r)| < ef for prespecified f.

2 A similar function named A11Roots is described in the literature, but it finds all roots of a polynomial.

? The portal URL is https://spsweb.fltops.jpl.nasa.gov/portalappsops/Main.do?ft=spa. This is an internal JPL website and a
user name and password are required for access.

*If points of discontinuity are not known a priori, then performance may not be as reliable or efficient in finding roots in
the vicinity of these points.

(4) Itis presumed that the value of xGuard above can be chosen to be large enough
that the function values at root-guarded distances are not mistaken for zeros (i.e.,
that \ Sr+ xGuard| > ¢f unless there actually is a root here), and yet small
enough that no root is likely to exist within the guarded interval.

(5) Itis presumed that if successive root estimates x; and x;; ; are such that
|x;+1 — x;| < ex for given ex, then the root-finding process has converged.

(6) Itis presumed that if an interpolating polynomial is made to fit the object func-
tion across a given subinterval within a specified relative tolerance P, then
reliable judgments of whether the function exhibits monotone or convex behavior
within that subinterval can be made via examination of the polynomial.

The physical events represented by the zeros of metric functions in the MPG seem to adhere
to these criteria. The numeric guards and tolerances above provide the means for adapta-
tion and accommodation to physical and mathematical properties of the events.

Ill. Single Root Searches

Except in polynomial problems of degree less than four, root finding invariably requires

an iterative approach. There are three basic strategies, here called bounding, polishing, and
search. Typical root finders discussed in numerical analysis texts or available in subroutine
libraries find only a single root when invoked. They also may fail to find a root, even when
one exists.

Root bounding first determines an interval within which at least one root assuredly exists,
and then successively narrows the interval, still maintaining at least one root within the
interval, until an estimated root value satisfies convergence criteria. A root is said to be
bracketed in the interval [a, 6] if the function is continuous in this interval and f(a)f(b) < 0.
The intermediate value theorem then guarantees, because f(a) and f(4) have different
signs, that the function value zero must be attained at some value of the variable within the
interval. Bisection, Regula Falsi, Weijngaarten-Dekker-Brent, and Ridders methods, dis-
cussed in the References, are all methods that converge on a bracketed root.

Root polishing begins with an initial estimate of where the root might lie, and iteratively
seeks successively improved estimates until convergence criteria are met. The Newton-Raph-
son, secant, and Taylor-series reversion methods, also discussed in the References, are classic
root polishers. Having an appropriate initial estimate is key to the success of the method.
The method of determining this value is typically a heuristic based on some knowledge of
the problem.

Exhaustive search segments the search interval into small enough pieces that each may be
presumed to contain no more than a single root (by way of special knowledge of the char-
acter of the problem). Each of these is examined separately for the presence of a root using
bracketing, if it applies, or root polishing otherwise. This is essentially the method used by
the MPG's predecessor, the Network Support Subsystem Metric Prediction software. Adaptive

search is a specialization of the exhaustive search that subdivides each subinterval only to
the point necessary to determine the presence or absence of a root.

The more difficult and uncertain case of root finding therefore occurs when the bounding
subinterval contains an even number of roots. The function values at the interval endpoints
in this case are nonzero and have the same algebraic sign, as signified by f(a)f(b) > 0. The
facts of this situation are:

(1) A continuous function that varies monotonically from the value at one endpoint
to that at the other has no roots in the interval.

(2) A function that is convex with respect to zero between the endpoints again has no
roots.

(3) A function that is concave with respect to zero over the interval also has no roots
unless (a) an extremum within the interval itself is a root (of even multiplicity), or
(b) the extremum value is opposite in sign to that of the endpoints. In the latter
case, the extremum brackets roots in the subintervals on either side.

(4) If there are multiple extrema within the interval, the one most in the direction of
zero (with respect to endpoints) nearest zero may be examined as in (3) above.

However, the process of locating extrema of an arbitrary function can prove time-consum-
ing, especially if derivative information is absent. An alternative is to develop criteria that
indicate, “with high reliability,” whether extrema are, or are not, present within a given
interval.

One such method is the generation of a Lagrange interpolation polynomial fitting the
interval. The Appendix contains the details of an optimized cubic polynomial fit to the two
endpoints and values at the 0.293 and 0.707 points of the interval.

An interpolated value at a point x;, denoted fi, may be compared with the actual func-
tion value /; at that point. If they do not agree within a “reasonable” deviation, then the
polynomial may be deemed not to fit the function well enough to attest the existence and
approximate the location of extrema. Reasonable, in this case, can be quantified to require
that

-
A

< el (1)

Jo

AT

g g i >

masx ({ f

for a prespecified allowable deviation® e L. The comparison points are chosen to be those
where the optimum cubic interpolation formula nominally exhibits the greatest deviation
from the function, which are 0.117, 0.5, and 0.883 (see Appendix for details). Obviously, as
eL is made smaller, then the subintervals that qualify also become smaller, but more trust-
worthy approximations result.

* The polynomial relative accuracy previously designated as eP is now recast as eL, where L designates the allowed error
in Lagrange interpolation. In the EveryDvRoot algorithm, this quantity is denoted eH, to signify the allowed error in
Hermite interpolation.

If the tolerance criteria are not met, the search interval can be subdivided into subinter-
vals, and each analyzed in turn. A natural point for subdivision is the midpoint, since the
function value has already been calculated here. This process can continue, then, until the
accuracy of the fit is deemed “trustworthy” for indicating the presence of extrema. The
judgments listed earlier can then be made as to the presence of a root in the subinterval.

If the polynomial fit has an extremum whose value is beyond zero, then the function can
be evaluated at this point to ascertain whether it truly brackets roots on either side. If it
does, a bracketing root finder may be used to extract the roots.

If the extremum or function value at this point is “reasonably close” to zero, then a polish-
ing root finder can be called upon to seek a root in this vicinity. Suggested initial points
include xg, x4, x5, X¢, X, and x;. If one trial location fails, others may be tried. If no roots are
found, then none may be presumed to exist in the interval.

The “reasonably close” condition in this case means that the extremum value lies within an
uncertainty range about zero due to the allowed error in the Lagrange fit. The fit error e L
may be degraded by a factor, here designated as ERZeroPad, so as not to reject an interval
that might possess a root that a root polisher could find. A padding factor of two or three
should prove sufficient. Larger pads elicit needless searches under normal circumstances.

The conditions under which a root can be missed in the process described above are:

(1) The curve-fitting error computation mistakenly reports the cubic polynomial
is trustworthy when it is not, and the interval is later rejected. This can be con-
trolled, to a large extent, by choice of L.

(2) An interval was discarded upon failing the “reasonably close” test, when, in fact,
a root was present. This can also be controlled by choice of eL and the zero pad
threshold.

(3) The polishing root finder could not locate the root. Little can be done when this
happens.

(4) The value chosen for xGuard on the basis of having | f(r &£ xGuard \ > ef may
be larger than the actual minimum distance between roots. Reducing ef may help
in this situation. If it does not, the function does not meet the assumed criteria on
which the algorithm is predicated to operate.

The conditions under which a root may be in error or falsely reported are:

(1) The value of ¢f may be too large.
(2) The value of ex may be too large.
The values of these two latter parameters are generally chosen based on the numerical

precision that can be attained when computing f(x) or its roots, and on the root precision
required.

IV. The EveryRoot Method

Given an interval [a, 5] and a function f(x), the object is to locate values » such that

JS(r) = 0, and to find all such values within the given interval. Root multiplicity is unim-
portant in MPG applications. The EveryRoot algorithm described below applies the strate-
gies described above in finding an isolated root, but continues to search for others until it is
reasonably assured that all in the given interval have been found. Having just found a root
r, the method seeks to find additional roots in the subintervals [@, r —xGuard] and

[» + xGuard, b], where guards have been erected on both sides of the extracted root to
assure that the just-found root is not found again in later actions.

Inputs include (1) the function f(x) whose roots are to be found; (2) the interval [x 4, x5]
to be searched; (3) the xGuard value; (4) the root tolerance ex; (5) the function zero toler-
ance &f; (5) the polynomial fit accuracy eZ; (6) the maximum number of iterations
maxIterations to be used in bracketing and root polishing; and (7) the maximum
number of roots maxRoots to be found.

The method maintains two data structures: the root list and the unsearched interval list.

At any stage of the search, the first of these contains the list of roots found so far, while the
other contains a list of packets, each containing the bounds of intervals that are yet to be
processed, together with the function values at these boundaries. For discussion purposes, if
subinterval bounds are [, x1], then the corresponding packet is designated {xy, x1, /o, /1}. If
the function values have not yet been evaluated, denote the packet as {x¢,x1,—, — }.

Initially, the root list is empty and the unsearched interval list contains the single packet
spanning the input search interval. The processing steps are numbered below for reference.

(1) Create an initial packet {x4,x5, —, — } and insert it into the unsearched interval
list.

(2) If the unprocessed interval list is empty or if the length of the root list is
maxRoots, no further action is required, so proceed to step 19.

(3) Retrieve a packet {xg, x1, fo,/1} from the unsearched interval list and examine it to
determine what action is to be taken next.

(4) If the length of the interval is less than xGuard, discard it and continue the pro-
cess back at step 2.

(5) If one or more function values in the packet are as yet unevaluated, calculate
function values to complete the interval packet.

(6) If the magnitude of the function value at one of the subinterval endpoints is
greater than ef, then proceed to step 8.

(7) Here, one of the endpoints is deemed to be a root, so insert it into the root list.
Shorten the subinterval by xGuard at the appropriate end (the least shortened
interval size permitted is zero). Modified endpoints are not permitted to lie outside
the current interval. Indicate the function value at this point as unevaluated (“-").
Insert the modified packet back into the unsearched interval list, and continue the
process back at step 2.

(8) At this point, endpoint function values are nonzero. If f,f; > 0, then the interval
does not bracket a root, so proceed to step 11.

(9) Use one of the bracketing root finders (e.g., Brent) to locate a root, say at x = r. Limit
the number of iterations that may be used to maxIterations.

(10) Insert the just-found root r into the root list, create packets {xy, 7 —xGuard,fy, —}
and {r +xGuard,x;, —,fi} for each of the subintervals in the manner of step 7 above,
insert each of these into the unsearched interval list, and proceed back to step 2.

(11) At this point, the interval endpoints are of the same sign. Compute the so-called
ridge error values, or differences between the function and the Lagrange interpolation
polynomial at its likely maximum error points (see the Appendix for particulars), nor-
malized as in Equation (1). If all three ridge errors satisfy the €L criterion, designate

Jmax = max ({| fo b £ L] £ L] /o

(12) Otherwise, the Lagrange fit is not yet deemed trustworthy, so split the current inter-

/1[}) and proceed to step 13.

» » > >

val at its midpoint by creating the two packets {x¢, X,.,f0,./,. } and {x,,, x1, f,n,/1}, Where
Xy = xyand f,, = f, unless | £, | < ef, in which case x;, = x,, + xGuard (a la step 7)
and f, = —. Insert these two packets in the unsearched interval list and proceed back
to step 2.

(13) Now the Lagrange fit is deemed trustworthy enough to indicate that any extrema
of the Lagrange polynomial within the interval correspond to actual extrema of the
function. Solve for the real roots of the derivative of the Lagrange interpolation poly-
nomial (see Appendix for particulars) that may lie within the current interval, if any.
These correspond to extrema within the interval. If there are no extrema, the function
is monotone in this interval. In this case, the interval may be discarded, so continue
the process back at step 2 above.

(14) Otherwise, evaluate the concavity at each extremum within the interval (see Appen-
dix for details). If there is no concavity, the interval is deemed not to contain a root
and may be discarded, so proceed back to step 2 above.

(15) The interval now is deemed to have a concavity and may possibly contain a root.
Compute the polynomial coefficients and evaluate the polynomial f;x at this extre-

_]éx >ERZeroPad fhax L,

then the polynomial extremum still has the same sign as the endpoints and is too far

mum point (see Appendix for details). If f; f;x > 0 and

from zero to give a reasonable chance of there being a root in the vicinity, so discard
the interval and proceed back to step 2.

(16) Evaluate the function at the extremum point, f,, = F(y..). If fofex = 0, then a
root has been bracketed, so split the current interval at this extremum point, creating
two packets {xo, Xox, f0, /o2 } and {x., 21, /o2, f1} in the manner of step 12 above (except
at the extremum, rather than the interval midpoint). Enter these into the unsearched
interval list, and proceed back to step 2.

(17) Otherwise, the extremum point is near enough to zero to warrant further search. Use
a polishing root finder (e.g., secant method) to search for it. Limit the number of itera-
tions to maxIterations at each trial. Use a number of initial conditions, if necessary.
If a root is found at x = » within the interval, go to step 10 above.

(18) Otherwise, no root is deemed present, so discard the interval and go to back to
step 2.

(19) All roots in the interval have been found. Sort and return the root list.

V. Example

A Mathematica implementation of the EveryRoot algorithm was engaged® in the search
for times during which the planet Mars is occulted by Moon as observed by DSS-14 over a
10-year period. For this purpose, a low-precision simulator” of body positions within the
solar system was employed, based on mean orbital elements published in the Explanatory
Supplement to the Astronomical Almanac.

According to this simulator, there are 131 conjunctions in the interval between Janu-

ary 2000 and January 2010, but there are only four occultations, at conjunctions 32, 63,

86, and 104. In the 87672-hr test interval, the total occultation time was only about 3 hr, a
fraction of about 3.4 x 10-. The maximum occultation interval was 70 min and the shortest
was about 18 min. The occultation metric function ranges from a maximum negative value
of about -3.14 to a maximum positive value (when occultations are in effect) in the range
0.00026 to 0.004. The dynamic range of the metric, as measured by the negative-to-positive
peak ratio when roots were found, is over 12000:1.

EveryRoot found all the occultation entry and exit events. Its input parameters were
xGuard= ex = 30s,ef =107, eL = 0.01, maxIterations = 30, and maxRoots = 30,000.
It required, on average, about 148 samples of the metric function per conjunction, or about
5.3 samples per day, which averages about 4.5 hr between samples. This average sample
interval is about 15 times longer than the shortest occultation period. Clearly, more samples
were being expended in searching potential occultation regions than in searching more
remote regions, so these figures attest to the adaptability of the algorithm to focus on the
important portions of a trajectory.

In actual MPG tests conducted by Jonathan Walther, an 11-hr min-max search for occul-
tations of a Mars orbiter (Mars Reconnaissance Orbiter) by the Moon required 65 samples.
If this rate were to be extrapolated to cover the same 10-year span, about 518,000 samples
would be required. This represents a factor of 26 times the number required by the
EveryRoot search.

This is a significant advantage, not only in execution efficiency, but also in simplicity, since
the containment interval approach used in the current MPG, primarily for robustness, but
for efficiency as well, is not needed.

¢ The details of this experiment area reported in the Mathematica study MarsMoonOccultationEvents.nb found in the
MPG Mathematica Archives in the Services Preparation Subsystem Portal (internal JPL site).

7 Details of this simulation are reported in the Mathematica study SpacecraftSolarSystemSimulator.nb found in the
MPG Mathematica Archives in the Services Preparation Subsystem Portal (internal JPL site).

VI. Conclusion

This article presents a root finder capable of finding all roots of a function within a given
interval subject to very lenient assumptions, which are (1) the function is continuous
within the interval; (2) adjacent roots are separated at least by a known amount; (3) a func-
tion value less than a given magnitude is considered to be at a root value; (4) the value of
the function at the minimum separation distance from a root will not be less than (2) un-
less there is another separate root there; (5) if two root estimates during an iteration differ
by less than a prespecified value, then the search process is considered to have converged;
and (6) an optimized cubic polynomial, fit to the function over a given subinterval, that
satisfies a given relative error condition at three optimally chosen internal points, reliably
indicates whether the function has extrema within the interval.

As will be the case with all root finders, there will be functions that are not sufficiently well
behaved that all roots can be found, that is, those that fail the assumptions above. The ro-
bustness of the method depends on choosing the three parameters that control the search
in such a way as to make the performance acceptable. Such considerations, then, may be
application-dependent, and may have to be made on a case-by-case basis.

In validation tests® (not shown here), the root finder was subjected to functions having

a wide dynamic range, roots of even multiplicity, sparse roots, and closely spaced roots.
Although the method, as developed here, assumes that the function is continuous, when
it was given discontinuous functions, there was some loss of efficiency while searching
near the discontinuities. But in all cases, all roots were located when input parameters were
consistent with function behavior.

Like the MPG curve-fitting object, the EveryRoot algorithm adapts to the dynamics of the
given object function. Functions that are smooth over long intervals require fewer parti-
tions, and hence, fewer samples, than do more dynamically changing functions. However,
the interpolation accuracy required merely to ascertain the character of extrema within an
interval is orders of magnitude less than that required to fit a function such as the pre-
dicted downlink frequency characteristic, for example. The root finder is potentially thus
much faster curve fitting. Moreover, its role is direct (i.e., to find roots), whereas the role of
curve fitting in event detection was more indirect.

Acknowledgment

The author would like to acknowledge the competent and critical review of this article and
the suggestions for its improvement given by W. Van Snyder.

8 Validation cases appear in the Mathematica study EveryRoot .nb, found in the MPG Mathematica Archives in the
Services Preparation Subsystem Portal (internal JPL site).

11

References

[1] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes,
Cambridge University Press, 1986.

[2] C.]. E Ridders, “A New Algorithm for Computing a Single Root of a Real Continu-
ous Function, IEEE Transactions on Circuits and Systems, vol. CAS-26, no. 11, Novem-
ber 1979.

[3] M. Abramowitz and 1. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, National Bureau of Standards Applied Math Series 55,
U. S. Dept. of Commerce, U. S. Government Printing Office, Washington, DC 20402,
1964, Tenth Printing 1972.

[4] Explanatory Supplement to the Astronomical Almanac, University Science Books, Mill
Valley CA, 1992.

12

Appendix

Cubic Polynomial and Extrema Computation

This Appendix derives the properties of the cubic Lagrange interpolation polynomial used
by the EveryRoot function. The packet defining the current subinterval being processed
will be denoted as {x, x1,/,/1}. For convenience, the interval will be normalized to occupy
[0,1] under the representation

X = x9+ hy
h = (x1 — x0)
X — % (A-1)
y = T
F(y) = f(x)

Generating the Lagrange polynomial requires two more function samples at internal points,
here taken to be the symmetric values @ and b6 = 1 — a. With f = [fo, f,, /3, fl]T set to the
vector of values at the sample points, Mathematica derives the polynomial in y over the
normalized interval as the quadratic form L (v) = [1, v, 9%, y3]M f, in which

1 0 0 0
1+a-—2a 1 - 1)
a(l — a) a(l — 2a) (1—a)1 — 2a)
M = 2 B 2—a l+a 1 (A-2)
a(l —a) a(l—a)1l —2a) a1l —a)1 — 2a) a(l — a)
1 1 1 1
T al—a) a—a)d-—2¢) a(l—a)d—2a) al—a)

When the function being fit is taken to be the first few terms of the Taylor expansion of

F(x), then the error in the Lagrange interpolation polynomial is found to take the form

_ 2 _ _ 2

That is, the interpolation error is nominally dominated by the fourth derivative of the
function at the interval midpoint multiplied by a polynomial of degree 4. This coefficient
polynomial defines the dominant error characteristic, which is zero at the interval end-
points and at internal points ¢ and b, by design. The largest first-order errors occur at the
extrema of this polynomial, called the ridge-error points. Mathematica computes these to be

at (1 — V1 — 2a + 2a2), Y, and ¥5(1 + V1 — 2a + 24°). The corresponding error poly-

nomial extrema are similarly found to be

{_ 11— a)’ [1 — 2a]2 a0 - a)z}

4 4 4 (A-4)

13

All three of these extrema are made equal in magnitude when « is chosen to satisfy the
condition

[1 —420]2: 02(14— a) (AS5)

Collection of terms and simplification of this condition produces the equation
(1~ 4a + 82" — 4a") = 0 (A-6)

The solution of this equation, for which 0 < a < %, can be verifiedtobea =1 — 1/ /2.
This value makes the cubic polynomial a mini-max fit, insofar as the dominant error term
in the Taylor expansion is concerned.

The matrix of the quadratic form above for the minimax cubic polynomial is then

1 0 0 0
-3—2/2 4+3/2 -—2-/2 1
41+/2) —10-7/2 8+5/2 —200+/2)
—200+V2) 6+4/2 —6—-4/2 2001+/2)

My = (A-7)

The coefficients of the optimized cubic polynomial F(y) = ¢y + ¢y + ¢ % + ¢4y follow
from the quadratic form given earlier. They are the vector components

Co
C1

= M,,f (A-8)

C2
C3
Interpolated values of the Lagrange polynomial may now be computed for any location

within the unit interval. The SPICE POLYDs utility may be used for this purpose, if desired.

The ridge-error locations are

vo =Y —V1 - 24+ 24%) = L5 (1 — /2 —/2) = 0117317

v = Y5 =050
va = Y50+ V1 20+ 2¢%) = Y5 (1 + /2 — /2) = 0.882683

(A-9)

The EveryRoot algorithm evaluates the interpolation error at the ridge-error points. The
values of the optimized cubic polynomial at the these locations can each be expressed as
the vector inner product of the four function samples and a constant vector, found by
Mathematica to be

vo= s+ V2= V2), e V21 /2), - V2 1 /2), (1- V2~ V2)]
Von = 2101 =V2), (14 V2), 1 +/2), (1 —/2)]
[(1—ve=V2) (1—Vz+/2), 1+vV2+/2) (1+V2—V2)]

<

A

\
NI

14

Numeric values of these ridge-error vectors are

v = [0.441342, 0.71194, —0.21194, 0.0586583]
Vem = [—0.103553, 0.603553, 0.603553, — 0.103553] (A-10)
v = [0.0586583, —0.21194, 0.71194, 0.441342]

The interpolation errors at the ridge error points are now computed as

€e0 = ‘f(xe())_ Veo * f‘
Eem = ‘f(xm) — Vem * f‘ (A-11)
Eel — ‘f(xel)i Vel ® f‘

where the f(x,;) values are those corresponding to the ridge-error points y,; via Equa-
tion (A-1).

Once EveryRoot has determined that the quality-of-fit criterion has been met, as judged
using Equation (1) in algorithm step 11, the coefficients {cy, c1, cs, c3} may be computed
from the final set of function samples using Equation (A-8). The extrema can then be deter-
mined by finding the roots of the derivative polynomial, whose coefficients are {c1,2¢3, 3c3}.
The SPICE RQUAD function may be used for this purpose. Only the real solutions that lie
within in the unit interval, if any, are retained.

The curvature along the polynomial is determined by its second derivative, now a linear
polynomial whose coefficients are {2cs, 6c3}. At the extremum point y,,, the curvature is
thus given by the simple expression 2c; + 3c3y.,. An extremum with positive curvature is a
local minimum, while one with negative curvature is a local maximum.

Therefore, for an interval whose endpoints are of the same algebraic sign, the Boolean value

concave = (fy(2¢2 + 6¢3Yer) > 0) (A-12)

is true when the cubic polynomial is concave, and false if it is convex, at the extremum.

